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Abstract 

In recent years there have been a number of develop- 
ments in direct methods involving refinement processes 
applied to initially random sets of phases. Procedures 
which have been used for refinement include least- 
squares and gradient methods applied to triple-phase 
relationships expressed as linear equations and also the 
tangent formula. In the present investigation seven 
functions are investigated for the refinement of random 
phases; because of the awkward form of these 
functions the refinement process used is based on a 
parameter-shift algorithm. Some of the functions 
appear to be more effective than others but the most 
effective one was discovered through making a mistake 
with one of the others and no rational explanation for 
its efficacy can be given. Trials have been made with 
known structures and with three unknown structures 
which were originally solved by the processes described 
in the paper. 

Introduction 

In recent years a great deal of attention has been paid 
to multisolution direct methods which refine, or refine 
and extend, initially random sets of phases. Using 
random phases, with phase relationships expressed as 
linear equations, Baggio, Woolfson, Declercq & Ger- 
main (1978) showed how true phases came from a 
refinement process in a limited number of trials. This is 
the basis for the very successful direct-methods 
procedure YZARC (Declercq, Germain, Woolfson & 
Wright, 1981). Furusaki (1979) has described a Monte 
Carlo method where a large MULTAN starting set is 
given random phases which are then extended and 
refined by the tangent formula. In the RANTAN 
procedure (Yao Jia-xing, 1981) a very large set of 
reflexions, sometimes of sufficient size to define the 
structure, has allocated random phases and initial 

weights and these phases are then refined by a 
controlled use of a weighted tangent formula. 

Here there will be examined various refinement 
procedures, based on different functions, using as a 
refinement procedure the parameter-shift method 
described by Bhuiya & Stanley (1963). This has two 
advantages - firstly that it offers the possibility of 
jumping over, or escaping from, subsidiary maxima or 
minima, and secondly that it can be applied to 
awkward functions of the variables being refined. 

The refinement functions 

(I) The first group of functions 

Here there will be considered refinement functions 
based on Sayre's equation (Sayre, 1952) which may be 
written in the form: 

IEhl 2 : Kh ~ Eh E_h, Ew_h" (1) 
h' 

Taking the real and imaginary sides of the equation 
separately this gives 

I E h l 2 : K h ~ .  IEhEh'Eh-h'l COS(tPh-- ¢Ph'- qTh-h') (2) 
h' 

and 

O:Kh~lEhEh, Eh_h,I sin(qTh-- ~ , -  (Ph- h')" (3) 
h' 

Because these equations are going to be applied to 
structures with non-equal atoms and with only a limited 
number of terms in the summations it is necessary to 
find a scale factor, S, such that the equations 

[Eh 12 = S ~ IEhEh, Eh_h,I COS(fPh-- q7 h, - -  ( P h -  h' )  (4) 
h' 

apply as closely as possible. One way of doing this is 
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through the result given by Germain, Main & Woolfson 
(1970): 

I1 (Kh, h') 
(COS((Ph - -  o h ' -  (Ph- h ' ) )  - -  - -  ~ah,h', ( 5 )  

I0(Kh,h ') 

where I~(x) and Io(X) are modified Bessel functions and 

RTh,h' : 2N-I /2IEhEh ' Eh - h' I (6) 

for N equal atoms in the unit cell. 
A single overall scale factor for all the equations can 

be found as 

IEh 12 
h 

S = . (7) 
~ I Eh Eh, Eh - h' I ~,h' 

h h' 

This gives rise to our first refinement function 

I//A = Z {(SXh-IEhl2)  2 + (SYh) 2}' (8) 
h 

where 

and 

X h = ~ IEhEh, Eh_h,I COS(Oh-- oh , -  oh-h') (9) 
h' 

gh=  ~ IEhEh'Eh-h'[ s i n ( o h -  o h , -  o h - h ' ) "  (10) 
h' 

The function gt a would be expected to be a minimum 
for a correct set of phases. 

Experience with individual Sayre-type equations 
revealed that, with an overall scale factor, the agree- 
ment between left-hand and right-hand sides strongly 
depended on the number of terms in the summation. 
For this reason there was tried an individual scale 
factor for each equation, given by 

Sh=  [Ehl2/~ IEhEh'Eh-h' l  ~,h" (11) 
h' 

This gives a second refinement function 

~g.= Z {(ShXh-- [Eh12) 2 -  (Sh Yh)2}, (12) 
h 

which again should be a minimum. 

(II) The second group of functions 
The usual criterion for a good set of phases, which is 

implicit in the MULTAN figure of merit ABSFOM, is 
having a high value for the sum of all the quantities Xh 
in (9). For the next refinement function this condition is 
combined with having the quantities Yh as small as 
possible by requiring 

I//c---- Z {Xh-- [ Yhl } (13) 
h 

During tests with ~c it was found by accident that 
another function to be maximized 

~'o = Y {Xh-- Yh} (14) 
h 

also works well although the reason for this is 
somewhat obscure. In fact from (9) and (10) one finds 

~'D = V/~ Z Z I Eh Eh, Eh _ h'  ] 
h h' 

x c o s ( o h -  o h , -  oh_ h' + n/4), (15) 

which seems to drive the values of triple-phase 
relationships towards - n / 4 .  It would be just as 
reasonable to replace the difference Of Xh and Yh in (14) 
by the sum, in which case it would appear that the 
relationship was being driven towards +n/4. Despite 
the fact that a rational basis for function ~D cannot be 
found we have investigated its use. 

(III) The third group of functions 

The result given in (5) for the expectation value of 
the cosine of a triple-phase invariant leads to the 
refinement function 

lit E = ~ ~ I Eh Eh' Eh - h ' l 
h h' 

X {COS((ph--  (ph , - -  ( P h _ h , ) - -  ~h,h,} 2, ( 1 6 )  

which should be minimized. 
In ~'E only the expectation value of the cosine 

invariant is included. The fact that the sine invariant is 
expected to be close to zero may be incorporated in the 
form 

g/v = Z Y. IEhEh, Eh- h'l {[COS(Oh-- Oh ' -  oh- h') -- ~h,h'] 2 
h h' 

+ sin2(oh - o h , -  oh- h')}, (17) 

which should be minimized. After simplification this 
leads to the refinement function 

~ F = ~ .  ~ IEhEh'Eh-h' l  ~h,h' COS(Oh-- o h , -  oh-h'), (18) 
h h' 

which should be maximized. A similar refinement 
function has been used by Hull, Viterbo, Woolfson & 
Zhang Shao-hui (1981). 

Another variant of this general type of function 
involves using the expectation value of sin2(oh - oh, - 
~Ph-h')- From the basic probability distribution for the 
triple-phase invariants (Cochran, 1955) it is readily 
found that 

1 1 /2(/¢h,h,) 
( C O S 2 ( ( p h -  ( O h ' -  ( O h - h ' ) )  : -  -b (19a) 

2 2 Io(Xh,h,) 

to be large, and 
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Table 1. Tests of refinement functions 

The bracketed pair o f  numbers  following the name of  the structure gives the number  of  phases and number  of  relationships in the system. 
N T  means ' number  of  trials' and M P E  means  'mean  phase error in degrees' .  All results with M P E  <_ 60 are given. 

Function ~A q/B ~c q/n ~'E ~ r  

Structure N T  MPE N T  MPE N T  M P E  N T  MPE N T  M P E  N T  M P E  

Cinobufagin 52 60 55 59 23 41 49 18 20 73 60 27 39 
(200/5769) 
Ergocalciferol 128 62 49 49 59 49 47 90 84 
(200/5157) 
Factor S 199 53 57 199 58 54 55 57 154 56 113 53 177 37 56 
(100/1584) 
Munich 95 138 58 60 41 45 66 15 190 53 53 190 29 31 37 
(100/1506) 47 52 54 56 39 42 45 

52 60 58 45 46 46 
46 48 48 
4951 52 
52 52 53 
54 55 55 
58 

NT MPE 

68 

84 

199 55 59 

1 1 I2(Kh,h,) 
(sin2(~0h- ~0h,- ¢Ph-h')) -- (19b) 

2 2 Io(Xh,h, ) 

This leads to the final refinement function 

~ = • Z IEhEh, Eh_ h,I [ [COS(q~ -- q~ , -  q~- h')-- ~h,h'] 2 
h h' t 

_ _ _1 + 21 /2(Xh"h') I}/0(Xh,h,) " + sin2(~ q~, ~0h-h,)-- 2 

Some experiments will now be described using the 
seven refinement functions ~A to ~ .  

Results 

For four structures trials have been carried out with all 
seven of the refinement functions. These are: (i) 
c i n o b u f a g i n :  C 2 6 H 2 7 0 6 ,  P2~2121, Z = 4 (Declercq, 
Germain & King, 1977); (ii)ergocalciferol (vitamin 
D2): C28H440, P212121, Z = 8 (Hull, Leban, Main, 
White & Woolfson, 1976); (iii) factor S: C 4 3 H 4 9 N 7 O I 0  , 

P2~212~, Z = 4 (Declercq, Germain, Van Meerssche, 
Hull & Irwin, 1978); (iv) munich: C39H16 , C 2 ,  Z = 8 
(Szeimies-Seebach, Harnisch, Szeimies, Van 
Meerssche, Germain & Declercq, 1978). 

Of these structures cinobufagin is fairly straight- 
forward. At the time it was solved by one of the 
techniques described here munich had resisted the 
solution by other direct methods. The other two 
structures are both very challenging and usually can 
only be solved by developing initial fragments represen- 
ting a small fraction of the total structure. 

The results are shown in Table 1. The interesting 
observation is that function ~o, the one for which there 
is no rational explanation, seems to perform better than 
the others and other tests, not reported here, support 

Table 2. Solutions of three unknown structures with 
refinement function ~o 

The notat ion is as for Table  1. 

Structure N T  M P E  

WDS 117 ~a~ 44 37 
(300/6000) 
DEBH 22 c~ 36 23 23 24 37 37 

394748 
CH3PC2H5 ¢c~ 22 14 14 15 19 19 
(250/6750) 20 20 20 20 20 

20 55 
(350/10050) 15 18 23 23 23 24 

References: (a) Debaerdemaeker (1981): C28HIsCI4NzO3, P21/n , Z = 4; 
(b) Friedrichsen, Schr6er & Debaerdemaeker (1980): C14Hz2N203S , 
P21212 l, Z = 8; (c) Debaerdemaeker (1982): C25H23OP.Cr(CO)3, 
P2j2~2~,Z = 4. 

this view. Indeed, this function has been used to solve 
three unknown structures and the test results for these 
are shown in Table 2. 

A characteristic of several of the refinement func- 
tions described here is that they do not tend to drive 
the triple-phase invariants towards zero (modulo 2n). 
Methods which do drive invariants towards zero have 
the characteristic that the errors in phases are heavily 
correlated via the phase relationships. This has an 
adverse effect on the quality of the resultant E maps 
(Silva & Viterbo, 1980). If the errors in phases are not 
so heavily correlated, as will be so for many of the 
functions here described, then even relatively large 
r.m.s, errors can give reasonable E maps with con- 
siderable fragments visible. In tests we have found that, 
with a sufficiently large number of reflexions, phase sets 
with r.m.s, errors up to 60 ° can give developable 
fragments which is why we have chosen this limit in 
Tables 1 and 2. 

We conclude that, notwithstanding the theoretical 
uncertainties, the refinement function ~'o can be a 
useful aid to solving crystal structures from initially 
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random phases and we intend to distribute a computer 
package, based on the MULTAN system, to implement 
this and perhaps one or two of the other refinement 
functions as well. The computer time necessary for 
these parameter-shift refinement programs is not 
excessive and, as it turns out, for the second group of 
functions which includes ~D the timings are least. As an 
example, for the structure CH3PC2H5 (Table 2) with 
350 reflexions and I0 050 relationships, the refinement 
time was about 4 min per trial on a Telefunken TR440 
and would take about one half of that time or less on a 
DEC System 10 computer. Perhaps it should be said 
that while there is no strong indication that these 
refinement procedures are markedly better than those 
already in use they are different, are comparable in 
power and offer an alternative approach for solving 
difficult structures. 

We wish to express our gratitude to the Computing 
Centre of the University of Ulm for the use of its 
facilities and to the Deutches Forschungsgemeinschaft 
and North Atlantic Treaty Organisation for support of 
our collaborative activities. 
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Abstract 

A method of combining interactive molecular graphics 
with restrained least-squares refinement is described. 
This enables a researcher using the interactive com- 
puter graphics terminal to weight the shifts applied to 
the individual atoms in following cycles of refinement 
according to the confidence in their positions. The 
weights are incorporated into the least-squares pro- 
cedure using the Marquardt factor which was originally 
introduced to handle the ill-conditioned case [Moss & 
Morffew (1982). Comput. Chem. 6, 1-3; Marquardt 
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(1963). SIAM J. Appl. Math. 11, 431-441]. The 
described refinement strategy has been imlemented at 
Birkbeck College, London, and, using avian pancreatic 
polypeptide (APP) as test data, some refinements have 
been carried out. In order to compare the results of 
these refinements, histograms have been drawn that 
show the distribution of distances between the corre- 
sponding atoms in the different models. These histo- 
grams show that the model is improved by including 
the 'confidence' weighting. An improvement of 7.5% 
was achieved in the mean distance between the 
corresponding atoms in the fully refined model and a 
© 1983 International Union of Crystallography 


